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1 Approximations Methods 
 

1.1 Matrix Formulation of Quantum Mechanics 
Consider the time independent Schrödinger equation: 

𝐻|𝜓⟩ = 𝐸|𝜓⟩. 
Take any complete set of functions |𝑛⟩ and expand |𝜓⟩ =
∑ 𝑎𝑛|𝑛⟩𝑛  and multiply with ⟨𝑚|: 

∑ 𝑎𝑛⟨𝑚|𝐻|𝑛⟩
𝑛

= 𝐸∑ 𝑎𝑛
𝑛

⟨𝑚|𝑛⟩. 

Using the definition 𝐻𝑚𝑛 ≔ ⟨𝑚|𝐻|𝑛⟩ and 𝑆𝑚𝑛 ≔ ⟨𝑚|𝑛⟩ (note that 
𝐻𝑚𝑛 = 𝐻𝑛𝑚

∗ , 𝑆𝑚𝑛 = 𝑆𝑛𝑚
∗ ) simplifies this equation and makes it 

possible to write it at a matrix equation: 

∑ 𝑎𝑛𝐻𝑚𝑛
𝑛

= 𝐸∑ 𝑎𝑛
𝑛

𝑆𝑚𝑛  ⟺   ℋ𝑎⃗ = 𝐸𝒮𝑎⃗  ⟺   (ℋ − 𝐸𝒮)𝑎⃗ = 0 

⟺  (

𝐻11 − 𝐸𝑆11 𝐻12 − 𝐸𝑆12 𝐻13 − 𝐸𝑆13 ⋯
𝐻21 − 𝐸𝑆21 𝐻22 − 𝐸𝑆22 𝐻23 − 𝐸𝑆23 ⋯
𝐻31 − 𝐸𝑆31 𝐻32 − 𝐸𝑆32 𝐻33 − 𝐸𝑆33 ⋯

⋮ ⋮ ⋮ ⋱

)(

𝑎1
𝑎2
𝑎3
⋮

) = 0. 

Here, ℋ is a matrix with elements 𝐻𝑚𝑛 , 𝒮 with 𝑆𝑚𝑛 and 𝑎⃗ has the 
components 𝑎𝑛 . To solve for 𝐸, set det(ℋ − 𝐸𝒮) = 0. 
Of course, often is 𝑆𝑚𝑛 = 𝛿𝑚𝑛, which yields clearly an eigenvalue 
problem: det(ℋ − 𝐸𝕀) = 0. 
 

1.2 Variational Principle 
Consider the problem: 

𝐻|𝑛⟩ = 𝐸𝑛|𝑛⟩. 

An arbitrary trial function |𝜙⟩ can be expanded |𝜙⟩ = ∑ 𝑎𝑛𝑛 |𝑛⟩. 

Next, evaluate the expectation value of the energy 〈𝐻〉 for the 

trial function: 

〈𝐻〉 = ⟨𝜙|𝐻|𝜙⟩ =∑𝑎𝑛
∗𝑎𝑚⟨𝑛|𝐻|𝑚⟩

𝑛,𝑚

=∑𝑎𝑛
∗𝑎𝑚𝐸𝑚⟨𝑛|𝑚⟩

𝑛,𝑚

=∑|𝑎𝑛|
2𝐸𝑛

𝑛

≥∑|𝑎𝑛|
2𝐸0

𝑛

= 𝐸0. 

Hence, for any trial function the expectation value 〈𝐻〉 is bigger 

than the true ground state energy 𝐸0. Caution: If |𝑛⟩ are not 

orthonormal, the energy is 〈𝐻〉 = ⟨𝜙|𝐻|𝜙⟩/⟨𝜙|𝜙⟩. 

EXAMPLE 1: VARIATIONAL PARAMETER 

To get a good guess on 𝐸0, it is possible to vary the trial function 

𝜙 → 𝜙𝜆 using a variational parameter. Assume the solution to 

the harmonic oscillator is unknown and the trial function is 

𝜙𝜆 = {
√2𝜆 𝜋⁄ cos 𝜆𝑥 −𝜋 2𝜆⁄ < 𝑥 < 𝜋 2𝜆⁄

0 else
. 

Next, calculate 〈𝐻〉: 

𝐸 = 〈𝐻〉 = ∫ 𝑑𝑥 𝜙𝜆
∗ (−

ℏ2

2𝑚

𝜕2

𝜕𝑥2
+
𝑚𝜔2

2
𝑥2)𝜙𝜆

∞

−∞

=
ℏ2𝜆2

2𝑚
+
𝑚𝜔2(𝜋2 − 6)

24𝜆2
 

and find the 𝜆0, which minimizes 〈𝐻〉: 

𝜕𝐸

𝜕𝜆
=
ℏ2𝜆0
𝑚

−
𝑚𝜔2(𝜋2 − 6)

12𝜆0
3 =

!
0     ⟺       𝜆0

4 =
𝑚2𝜔2(𝜋2 − 6)

12ℏ2
. 

Next, insert 𝜆0 into the original formula: 

𝐸 = ±
ℏ2

2𝑚
√
𝑚2𝜔2(𝜋2 − 6)

12ℏ2
±
𝑚𝜔2(𝜋2 − 6)

24
√

12ℏ2

𝑚2𝜔2(𝜋2 − 6)

= ±
ℏ𝜔

2
√
𝜋2 − 6

12
±
ℏ𝜔

2
√
𝜋2 − 6

12
= ±

ℏ𝜔

2
(2√

𝜋2 − 6

12
). 

The last bracket term equals ≈ 1.136. Hence 𝐸 is quite close to 

the actual value ℏ𝜔 2⁄ . 

EXAMPLE 2: LINEARKOMBINATION AS A TRIAL FUNCTION 

Trial wave function of the form 𝜙 = ∑ 𝑐𝑛𝜙𝑛
𝑁
𝑛=0 . E. g. 𝜙𝑛 might be 

atomic solutions and one is looking for the molecule solution. 

With this trial function, the energy is 

𝐸 = 〈𝐻〉 =
⟨𝜙|𝐻|𝜙⟩

⟨𝜙|𝜙⟩
=
∑ 𝑐𝑛

∗𝑐𝑚⟨𝜙𝑛|𝐻|𝜙𝑚⟩𝑛,𝑚

∑ 𝑐𝑛
∗𝑐𝑚⟨𝜙𝑛|𝜙𝑚⟩𝑛,𝑚

=
∑ 𝑐𝑛

∗𝑐𝑚𝐻𝑛𝑚𝑛,𝑚

∑ 𝑐𝑛
∗𝑐𝑚𝑆𝑛𝑚𝑛,𝑚

 

 

⟺     ∑𝑐𝑛
∗𝑐𝑚𝐻𝑛𝑚

𝑛,𝑚

= 𝐸∑𝑐𝑛
∗𝑐𝑚𝑆𝑛𝑚

𝑛,𝑚

. 

Now, assume all 𝑐𝑛
∗ , 𝑐𝑚  are independent and take 𝑐𝑛

∗  (or 𝑐𝑛 or the 

real/imaginary parts) as variational parameters. To get the 

minimum energy, take 𝑑/𝑑𝑐𝑖
∗ on both sides of the equation and 

set 𝑑𝐸 𝑑𝑐𝑖
∗⁄ = 0: 

LHS:    
𝑑

𝑑𝑐𝑖
∗∑𝑐𝑛

∗𝑐𝑚𝐻𝑛𝑚
𝑛,𝑚

=∑𝛿𝑖𝑛𝑐𝑚𝐻𝑛𝑚
𝑛,𝑚

=∑𝑐𝑚𝐻𝑖𝑚
𝑚

= ℋ𝑐. 

RHS:   
𝑑

𝑑𝑐𝑖
𝐸∑𝑐𝑛

∗𝑐𝑚𝑆𝑛𝑚
𝑛,𝑚

= 𝐸∑𝛿𝑖𝑛𝑐𝑚𝑆𝑛𝑚
𝑛,𝑚

= 𝐸∑𝑐𝑚𝑆𝑖𝑚
𝑛,𝑚

= 𝐸𝒮𝑐. 

This yields (ℋ − 𝐸𝒮)𝑐 = 0 which is just of the same form as the 

matrix in 1.1. Of course, if 𝜙𝑛 is complete (𝑁 = ∞), it is exactly 

the same as in 1.1 and there is no approximation whatsoever. 

But 𝜙𝑛 does not have to be complete, which results in a 

truncated matrix and approximation. 
 

1.3 Perturbation Theory 
See the derivation in “Quantenmechanik I (Theo D)”, chapter 9. 
For the time-dependent perturbation theory see 3.1. 
For a problem 𝐻 = 𝐻0 +𝐻

′, where the solutions of 𝐻0 are 
known and 𝐻′ is the perturbation, the approximate energies and 
eigenfunctions are 

𝐸𝑛 ≈ 𝐸𝑛
(0) + ⟨𝜓𝑛

(0)|𝐻′|𝜓𝑛
(0)⟩ + ∑

|⟨𝜓𝑚
(0)|𝐻′|𝜓𝑛

(0)⟩|
2

𝐸𝑛
(0) − 𝐸𝑚

(0)

𝑚≠𝑛

, 

𝜓𝑛 ≈ 𝜓𝑛
(0) + ∑

⟨𝜓𝑚
(0)|𝐻′|𝜓𝑛

(0)⟩

𝐸𝑛
(0) − 𝐸𝑚

(0)

𝑚≠𝑛

𝜓𝑚
(0). 

Here, 𝐸𝑛
(0) and 𝜓𝑛

(0) are the known solutions of 𝐻0. 
Recall the matrix formulation from 1.1: Assume now, the 
complete set are the eigenfunctions of 𝐻0. Hence, the matrix 
becomes ℋ − 𝐸𝕀 (since now 𝑆𝑛𝑚 = 𝛿𝑛𝑚) and the eigenvalues are 
given by det(ℋ − 𝐸𝕀) = 0. 
Now assume as an approximation that the off diagonal elements 
of ℋ are zero. Hence, the eigenvalues are the diagonal elements: 

𝐸𝑛 = 𝐻𝑛𝑛 = ⟨𝜓𝑛
(0)|𝐻0 +𝐻

′|𝜓𝑛
(0)⟩ = 𝐸𝑛

(0) + ⟨𝜓𝑛
(0)|𝐻′|𝜓𝑛

(0)⟩. 

This is just the first order result of perturbation theory. 
For the second order of the 𝑛-th energy, form all possilbe 2 × 2 
matrices like 

(

 
 

⋱ ⋮ ⋮ ⋮ ⋰
⋯ 𝐻𝑛𝑛 − 𝐸 ⋯ 𝐻𝑛𝑖 ⋯
⋯ ⋮ ⋱ ⋮ ⋯
⋯ 𝐻𝑖𝑛 ⋯ 𝐻𝑖𝑖 − 𝐸 ⋯
⋰ ⋮ ⋮ ⋮ ⋱)

 
 
⟹ ℋ𝑛𝑖

(2) ≔ (
𝐻𝑛𝑛 𝐻𝑛𝑖
𝐻𝑖𝑛 𝐻𝑖𝑖

). 

The eigenvalues of ℋ𝑛𝑖
(2) are given by det(ℋ𝑛𝑖

(2) − 𝐸𝕀) = 0 which 

yields 

𝐸1,2 =
𝐻𝑛𝑛 + 𝐻𝑖𝑖

2
±
𝐻𝑛𝑛 − 𝐻𝑖𝑖

2
√1 +

4|𝐻𝑛𝑖|
2

(𝐻𝑛𝑛 − 𝐻𝑖𝑖)
2

≈
𝐻𝑛𝑛 + 𝐻𝑖𝑖

2
±
𝐻𝑛𝑛 − 𝐻𝑖𝑖

2
(1 +

2|𝐻𝑛𝑖|
2

(𝐻𝑛𝑛 − 𝐻𝑖𝑖)
2
)

=
𝐻𝑛𝑛 + 𝐻𝑖𝑖 ± 𝐻𝑛𝑛 ∓ 𝐻𝑖𝑖

2
±

|𝐻𝑛𝑖|
2

𝐻𝑛𝑛 − 𝐻𝑖𝑖
=
+
𝐻𝑛𝑛 +

|𝐻𝑛𝑖|
2

𝐻𝑛𝑛 − 𝐻𝑖𝑖
. 

Here, 𝐻𝑛𝑛 is the 0th and 1st order. Now, assuming that the first 
order is much bigger than the second, it is 

𝐻𝑛𝑛 − 𝐻𝑖𝑖 = 𝐸𝑛
(0) + 𝐸𝑛

(1) − 𝐸𝑖
(0) − 𝐸𝑖

(1) ≈ 𝐸𝑛
(0) − 𝐸𝑖

(0) 

and this yields just the 2nd order perturbation term, if summed 
over 𝑖. 
For a degenerate case just take the matrix view point and 
calculate the eigenvalues of 

(
𝐻𝑛𝑛 𝐻𝑛𝑖
𝐻𝑖𝑛 𝐻𝑖𝑖

) 

with 𝜓𝑛
(0) ≠ 𝜓𝑖

(0) but 𝐸𝑛
(0) = 𝐸𝑖

(0). Since there are two 

eigenvalues, the degeneracy will be lifted. 



2 Atomic Physics 
 

2.1 Normal Zeeman Effect 
For an electron orbiting a proton with an angular momentum 
𝐿 = 𝑚𝑟𝑣, the dipole moment is 

𝜇𝐿 = 𝐼𝐴 =
𝑞

𝑡
𝜋𝑟2 = −

𝑒𝑣

2𝜋𝑟
𝜋𝑟2 = −

1

2
𝑒𝑣𝑟, 

where 𝐼 = 𝑞/𝑡 is the current and 𝐴 = 𝜋𝑟2 the orbit area. This 
yields the correlation 

𝜇𝐿 = −
𝑒

2𝑚
𝐿⃗⃗ = −𝑔𝐿

𝜇𝐵
ℏ
𝐿⃗⃗,          𝑔𝐿 = 1,          𝜇𝐵 =

𝑒ℏ

2𝑚
. 

The energy of a hydrogen atom with magnetic moment 𝜇 

increases under the influence of a magnetic field 𝐵⃗⃗ = 𝐵𝑒𝑧 about 

𝐸mag = −𝜇𝐵⃗⃗      ⟹      𝐻 = 𝐻atom + 𝐻mag = 𝐻atom +
𝜇𝐵𝐵

ℏ
𝐿𝑧 . 

But since 𝐻atom and 𝐿𝑧 have the common eigenfunctions 𝑌𝑙𝑚 , this 
is easily solvable: 

𝐻𝜓 = 𝐸𝜓    ⟹      𝐸 = 𝐸𝑛 + 𝜇𝐵𝐵𝑚𝑙 . 
Here, 𝐸𝑛 = −13.6 eV/𝑛

2 is the energy of the hydrogen atom. 
Obviously, the degeneracy is lifted (removed) and each former 
level 𝐸𝑛 is split into 2𝑙 + 1 levels (𝑚𝑙 = −𝑙, … , 𝑙). 
The normal Zeeman effect is only observed under the neglect of 
spin, that is to say only at particles where the spin cancels out 
(e.g. the two electrons of the helium). Therefore, it is actually 
more a special than a normal case. 
 

2.2 Hamiltonian of Spin-Orbit Coupling 
Spin-orbit coupling considers the interaction between the 

electrons spin and the 𝐵⃗⃗-field due to the current of the moving 
nucleus relative to the electron, which is in the magnitude of 1 T. 
Spin-orbit coupling gives an additional term in the Hamiltonian. 

It can be calculated using the Biot-Savart law and 𝐼𝑑𝑙 = 𝑗𝑑𝑉. 
Here, everything is from the viewpoint of the electron at the 

origin 0⃗⃗. 𝑣⃗𝑝 and 𝑟𝑝 are velocity and position of the proton, 𝑣⃗ =

−𝑣⃗𝑝 and 𝑟 = −𝑟𝑝  of the electron, where 𝑟 then is using the 

proton as the origin:  

𝐵⃗⃗(0⃗⃗) =
𝜇0𝐼

4𝜋
∮𝑑𝑙′ ×

0⃗⃗ − 𝑟′

|0⃗⃗ − 𝑟′|
3 = −

𝜇0
4𝜋
∫𝑑𝑉′ 𝑗(𝑟′) ×

𝑟′

|𝑟′|3

= −
𝜇0
4𝜋
∫𝑑𝑉′ 𝑒𝛿(𝑟′ − 𝑟𝑝)𝑣⃗𝑝 ×

𝑟′

|𝑟′|3
= −

𝜇0𝑒

4𝜋

𝑣⃗𝑝 × 𝑟𝑝

|𝑟𝑝|
3

= −
𝜇0𝑒

4𝜋

𝑣⃗ × 𝑟

|𝑟|3
=

𝜇0𝑒

4𝜋𝑚𝑟3
𝐿⃗⃗. 

For the hydrogen atom, this is sufficient (except for a missing 
factor of 1/2, see below) but it can be generalized for any central 
potential: The electric field for the electron is 

𝐸⃗⃗ =
𝑒

4𝜋𝜖0𝑟
3
𝑟    ⟹      𝐵⃗⃗ = −𝜖0𝜇0𝑣⃗ × 𝐸⃗⃗ = −

1

𝑐2
𝑣⃗ × 𝐸⃗⃗ =

1

𝑒𝑐2
𝑣⃗ × 𝐹⃗

=============== −
1

𝑒𝑐2𝑟

𝑑𝑉

𝑑𝑟
𝑣⃗ × 𝑟 =

1

𝑒𝑚𝑐2𝑟

𝑑𝑉

𝑑𝑟
𝐿⃗⃗, 

where it was used, that for central potentials it is 𝐹⃗ = −∇𝑉 =
−(𝑑𝑉 𝑑𝑟⁄ )(𝑟 𝑟⁄ ). Now, similarly to 2.1, the magnetic dipole 
moment for the spin is 

𝜇𝑠 = −
𝑔𝑠𝑒

2𝑚
𝑠 = −

𝑒

𝑚
𝑠,      𝑔𝑠 = 2, 

and the additional term in the Hamiltonian is 

𝐻′ = −𝜇𝑠𝐵⃗⃗ =
𝑒

𝑚
𝑠𝐵⃗⃗ =

1

𝑚2𝑐2𝑟

𝑑𝑉

𝑑𝑟
𝑠𝐿⃗⃗. 

However, since it is actual the electron which is accelerating and 
not the proton (as pretended in this simplified derivation), a 
factor of 1/2 is missing, which will not be derived here: 

𝐻′ =
1

2𝑚2𝑐2𝑟

𝑑𝑉

𝑑𝑟
𝑠𝐿⃗⃗. 

An alternative form can be given using 𝑠 = ℏ𝜎⃗/2: 

𝐵⃗⃗ =
1

2𝑒𝑐2
𝑣⃗ × 𝐹⃗ = −

1

2𝑒𝑐2
𝑣⃗ × ∇𝑉 =

1

2𝑚𝑒𝑐2
∇𝑉 × 𝑝 

⟹     𝐻′ = −𝜇𝑠𝐵⃗⃗ =
1

2𝑚2𝑐2
𝑠(∇𝑉 × 𝑝) =

ℏ

4𝑚2𝑐2
(𝜎⃗ × ∇𝑉)𝑝. 

 

2.3 Addition Rules of Angular Momentum 

Adding two angular momenta 𝐽 ≔ 𝐽1 + 𝐽2 with quantum 
numbers 𝑗1, 𝑚1, 𝑗2, 𝑚2 yields another angular momentum with 
possible eigenvalues 

|𝐽| = ℏ√𝑗(𝑗 + 1),     𝑗 = |𝑗1 − 𝑗2|, … , |𝑗1 + 𝑗2|; 

𝐽𝑧 = ℏ𝑚𝑗 ,     𝑚𝑗 = −𝑗,… , 𝑗. 

Note also: 

𝐽2 = 𝐽1
2 + 𝐽2

2 + 2𝐽1𝐽2     ⟺     𝐽1𝐽2 =
1

2
(𝐽2 − 𝐽1

2 − 𝐽2
2). 

A state can be described by (𝑗1, 𝑚1, 𝑗2, 𝑚2) as well as by 

(𝑗1, 𝑗2, , 𝑗,𝑚𝑗). That is because, for fixed 𝑗1, 𝑗2 there are 

(2𝑗1 + 1)(2𝑗2 + 1) 

states, since 𝑚𝑖 = −𝑗𝑖 , … , 𝑗𝑖 . But if described by (𝑗1, 𝑗2, , 𝑗, 𝑚𝑗) the 

number of possible states for fixed 𝑗1, 𝑗2 is the same (w.l.o.g. 
assume 𝑗1 > 𝑗2): 

∑ (2𝑗 + 1)
|𝑗1+𝑗2|
𝑗=|𝑗1−𝑗2|

= ∑ (2𝑗 + 1)
𝑗1+𝑗2
𝑗=𝑗1−𝑗2

= 2∑ 𝑗
𝑗1+𝑗2
𝑗=𝑗1−𝑗2

+ ∑ 1
𝑗1+𝑗2
𝑗=𝑗1−𝑗2

  

 = 2((𝑗1 − 𝑗2) + (𝑗1 − 𝑗2 + 1) + ⋯+ (𝑗1 + 𝑗2)) + (2𝑗2 + 1) 

 = 2((2𝑗2 + 1)(𝑗1 − 𝑗2) + ∑ 𝑛
2𝑗2
𝑛=1 ) + (2𝑗2 + 1) 

 = 2((2𝑗2 + 1)(𝑗1 − 𝑗2) + 𝑗2(2𝑗2 + 1)) + (2𝑗2 + 1) 

 = 2𝑗1(2𝑗2 + 1) + (2𝑗2 + 1) = (2𝑗1 + 1)(2𝑗2 + 1). 
 

2.4 Spin-Orbit Coupling for the Hydrogen Atom 
Recall from 2.2 and use 2.3 to get 

𝐻 = 𝐻0 + 𝐻
′ = 𝐻0 +

1

2𝑚2𝑐2𝑟

𝑑𝑉

𝑑𝑟⏟      
=𝑓(𝑟)

𝑠𝐿⃗⃗ = 𝐻0 +
𝑓(𝑟)

2
(𝐽2 − 𝐿⃗⃗2 − 𝑠2). 

Now, first order perturbation theory includes the term 

⟨𝑛𝑙𝑠𝑗𝑚𝑗|𝐻
′|𝑛𝑙𝑠𝑗𝑚𝑗⟩ =

ℏ2

2
〈𝑓〉 (𝑗(𝑗 + 1) − 𝑙(𝑙 + 1) − 𝑠(𝑠 + 1)⏟    

=3/4

). 

Now, examine an atom in the state 2𝑝, hence 𝑛 = 2, 𝑙 = 1, such 
that 𝑗 can have two values: 

⟨𝑛𝑙𝑠𝑗𝑚𝑗|𝐻
′|𝑛𝑙𝑠𝑗𝑚𝑗⟩ =

ℏ2

2
〈𝑓〉 {

−2 𝑗 = 1/2
1 𝑗 = 3/2

. 

For the hydrogen atom, the Coulomb potential yields 

𝑓(𝑟) = −
1

2𝑚2𝑐2𝑟

𝑑

𝑑𝑟

𝑒2

4𝜋𝜖0𝑟
=

𝑒2

8𝜋𝜖0𝑚
2𝑐2𝑟3

. 

The expectation value of 𝑟−3 can be given exactly (no derivation 
here, 𝜓𝑛𝑙𝑚(𝑟, 𝜃𝜑) = 𝑅𝑛𝑙(𝑟)𝑌𝑙𝑚(𝜃, 𝜑),  𝑎0 = 4𝜋𝜖0ℏ

2 𝑚𝑒2⁄ ): 

〈
1

𝑟3
〉 = ∫ 𝑑𝑟 𝑟2 |𝑅𝑛𝑙(𝑟)|

2
1

𝑟3

∞

0

=
1

𝑎0
3𝑛3𝑙 (𝑙 +

1
2
) (𝑙 + 1)

. 

Finally, the total first order perturbation correction is 

⟨𝑛𝑙𝑠𝑗𝑚𝑗|𝐻
′|𝑛𝑙𝑠𝑗𝑚𝑗⟩ =

ℏ2𝑒2

16𝜋𝜖0𝑚
2𝑐2

(𝑗(𝑗 + 1) − 𝑙(𝑙 + 1) −
3
4
)

𝑎0
3𝑛3𝑙 (𝑙 +

1
2
) (𝑙 + 1)

=
𝐸𝑛
(0)2

𝑚𝑐2

𝑛 (𝑗(𝑗 + 1) − 𝑙(𝑙 + 1) −
3
4
)

𝑙 (𝑙 +
1
2
) (𝑙 + 1)

, 

where 𝐸𝑛
(0) = −𝑒2 8𝜋𝜖0𝑎0𝑛

2⁄ = −13.6eV/𝑛2. Note that 

|𝐸𝑛
(0)| 𝑚𝑐2⁄ = 𝛼2/2𝑛2, where 𝛼 is the fine structure constant. 

 

 

 

 

 

 

 

 

 

 

 

 

 



2.5 Relativistic Correction 

The relativistic kinetic energy is using √1 + 𝑥 ≈ 1 + 𝑥 2⁄ − 𝑥2 8⁄ : 

𝑇 = √𝑝2𝑐2 +𝑚2𝑐4 −𝑚𝑐2 = 𝑚𝑐2 (√1 + 𝑝2 𝑚2𝑐2⁄ − 1)

≈ 𝑚𝑐2 (
𝑝2

2𝑚2𝑐2
−

𝑝4

8𝑚4𝑐4
) =

𝑝2

2𝑚
−

𝑝4

8𝑚3𝑐2
. 

Therefore, the correction term will be 𝐻′ = −𝑝4 8𝑚3𝑐2⁄ : 

⟨𝑛𝑙𝑚|𝐻′|𝑛𝑙𝑚⟩ = −
1

2𝑚𝑐2
⟨𝑛𝑙𝑚| (

𝑝2

2𝑚
)
2

|𝑛𝑙𝑚⟩

= −
1

2𝑚𝑐2
⟨𝑛𝑙𝑚|(𝐸𝑛

(0) − 𝑉)
2
|𝑛𝑙𝑚⟩

= −
1

2𝑚𝑐2
(𝐸𝑛

(0)2 +
2𝐸𝑛

(0)𝑒2

4𝜋𝜖0
⟨𝑛𝑙𝑚|

1
𝑟
|𝑛𝑙𝑚⟩

+
𝑒4

16𝜋2𝜖0
2 ⟨𝑛𝑙𝑚|

1
𝑟2
|𝑛𝑙𝑚⟩). 

Without proof, note that ⟨𝑛𝑙𝑚|𝑟−1|𝑛𝑙𝑚⟩ = 1/𝑎0𝑛
2 and 

⟨𝑛𝑙𝑚|𝑟−2|𝑛𝑙𝑚⟩ = 1/𝑎0
2𝑛3(𝑙 + 1 2⁄ ). Recall again 𝐸𝑛

(0) =
−𝑒2 8𝜋𝜖0𝑎0𝑛

2⁄ = −13.6eV/𝑛2 to get: 
⟨𝑛𝑙𝑚|𝐻′|𝑛𝑙𝑚⟩

= −
1

2𝑚𝑐2
(𝐸𝑛

(0)2 +
2𝐸𝑛

(0)𝑒2

4𝜋𝜖0𝑎0𝑛
2
+

𝑒4

16𝜋2𝜖0
2𝑎0

2𝑛3(𝑙 + 1 2⁄ )
)

= −
1

2𝑚𝑐2
(𝐸𝑛

(0)2 − 4𝐸𝑛
(0)2 +

4𝑛𝐸𝑛
(0)2

𝑙 + 1 2⁄
)

= −
2𝐸𝑛

(0)2

𝑚𝑐2
(

𝑛

𝑙 + 1 2⁄
−
3

4
) =

𝛼2𝐸𝑛
(0)

𝑛2
(

𝑛

𝑙 + 1 2⁄
−
3

4
). 

The last step can be done by simple substitutions; 𝛼 is the fine-
structure constant. 
 

2.6 Notation of Atomic States 
An atomic state can be denoted as 

𝐿𝐽𝑎
2𝑆+1 , 

where 𝑆 is the total spin quantum number of all the electrons 
and 𝐽 the total angular momentum of  all the electron 
(spin+orbital). 𝐿 represents the total orbital quantum number, 
but is denoted in letters not numbers: 

𝐿 = 0 → 𝐿 = 𝑆,
𝐿 = 1 → 𝐿 = 𝑃,
𝐿 = 2 → 𝐿 = 𝐷, etc.

 

For example, 𝑃3/2𝑎
2  holds 𝑆 = 1/2, 𝐿 = 1, 𝐽 = 3/2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.7 Anomalous Zeeman-Effect 
The normal Zeeman effect neglects the spin and is therefore only 
observed, if the total spin is zero. The anomalous Zeeman effect 
takes the magnetic moment of the spin into account at the 

perturbation term, when applying an external 𝐵⃗⃗-field 𝐵⃗⃗ = 𝐵𝑒𝑧: 

𝐻𝑍
′ = −𝜇𝐿𝐵⃗⃗ − 𝜇𝑠𝐵⃗⃗ =

𝑒

2𝑚
𝐿⃗⃗𝐵⃗⃗ +

𝑒

𝑚
𝑆𝐵⃗⃗ =

𝑒𝐵

2𝑚
(𝐿𝑧 + 2𝑆𝑧). 

𝐿⃗⃗ and 𝑆 are the total orbital and spin angular momentum 

respectively. Note, that 𝐽 = 𝐿⃗⃗ + 𝑆 ≠ 𝐿⃗⃗ + 2𝑆. 
The full Hamilton is now (𝐻𝑆𝑂

′ : spin-orbit-coupling, 𝐻𝑍
′ : Zeeman-

effect, ignoring the relativistic correction): 
𝐻 = 𝐻0 + 𝐻𝑆𝑂

′ +𝐻𝑍
′ . 

STRONG FIELD ZEEMAN-EFFECT (PASCHEN-BACK-EFFEKT): 
Take the Hamiltonian 𝐻 = (𝐻0 + 𝐻𝑍

′ ) + 𝐻𝑆𝑂
′  and treat 𝐻𝑆𝑂

′  as a 
perturbation. Since |𝑛𝑙𝑚𝑙𝑚𝑠⟩ is also an eigenstate of 𝐻𝑍

′ : 

(𝐻0 + 𝐻𝑍
′ )|𝑛𝑙𝑠𝑚𝑙𝑚𝑠⟩ = (𝐸𝑛

(0) + 𝜇𝐵𝐵(𝑚𝑙 + 2𝑚𝑠)) |𝑛𝑙𝑠𝑚𝑙𝑚𝑠⟩ 

(𝑠 = 1 2⁄  always). First order perturbation of 𝐻𝑆𝑂
′ : Recall from 

2.2 and 2.4 (However, it is treated differently here, since there is 
an external magnetic field): 

⟨𝑛𝑙𝑚𝑙𝑚𝑠|𝑓(𝑟)𝑆𝐿⃗⃗|𝑛𝑙𝑚𝑙𝑚𝑠⟩

= 〈𝑓(𝑟)〉 (〈𝑆𝑥〉⏟
=0

〈𝐿𝑥〉 + 〈𝑆𝑦〉⏟
=0

〈𝐿𝑦〉 + 〈𝑆𝑧〉〈𝐿𝑧〉) = ℏ
2〈𝑓(𝑟)〉𝑚𝑙𝑚𝑠. 

As seen in 2.4, 〈𝑓(𝑟)〉 is a number depending on 𝑛 and 𝑙. The total 
energy is therefore (𝜇𝐵 = ℏ𝑒/2𝑚): 

𝐸𝑛𝑙𝑚𝑙𝑚𝑠 = 𝐸𝑛
(0) + 𝜇𝐵𝐵(𝑚𝑙 + 2𝑚𝑠) + ℏ

2〈𝑓(𝑟)〉𝑛𝑙𝑚𝑙𝑚𝑠. 

For example for 𝑙 = 1 there are 6 possible 𝑚𝑙-𝑚𝑠-combinations: 
     𝑚𝑙           𝑚𝑠          𝑚𝑙 + 2𝑚𝑠          𝑚𝑙𝑚𝑠     

−1 −1/2 −2 1/2
−1 1/2 0 −1/2
0 −1/2 −1 0
0 1/2 1 0
1 −1/2 0 −1/2
1 1/2 2 1/2

 

Therefore, for 𝑙 = 1 there are five different energies possible. 
WEAK FIELD ZEEMAN EFFECT: 
Take the Hamiltonian 𝐻 = (𝐻0 + 𝐻𝑆𝑂

′ ) + 𝐻𝑍
′  and treat 𝐻𝑍

′  as a 
perturbation. For the 𝐻0 + 𝐻𝑆𝑂

′ -problem, the states were labeled 

by the quantum number |𝑛𝑙𝑗𝑚𝑗⟩, hence 𝑗, 𝑚𝑗 is more important 

than 𝑚𝑙 , 𝑚𝑠. Since 𝐽 = 𝐿⃗⃗ + 𝑆 is more important, consider only the 

𝐽-component of 𝐿⃗⃗ and 𝑆: 

𝑆𝐽 =
𝑆𝐽

|𝐽|

𝐽

|𝐽|
=
𝐽2 − 𝐿⃗⃗2 + 𝑆2

2𝐽2
𝐽,          𝐿⃗⃗𝐽 =

𝐿⃗⃗𝐽

|𝐽|

𝐽

|𝐽|
=
𝐽2 + 𝐿⃗⃗2 − 𝑆2

2𝐽2
𝐽. 

Here 𝐿⃗⃗2 = 𝐽2 − 2𝐽𝑆 + 𝑆2 and equivalent expressions were used. 
Hence, it is approximately: 

𝐿⃗⃗ + 2𝑆 ≈ 𝐿⃗⃗𝐽 + 2𝑆𝐽 =
𝐽2 + 𝐿⃗⃗2 − 𝑆2

2𝐽2
𝐽 + 2

𝐽2 − 𝐿⃗⃗2 + 𝑆2

2𝐽2
𝐽

=
3𝐽2 − 𝐿⃗⃗2 + 𝑆2

2𝐽2
𝐽 = (1 +

𝐽2 − 𝐿⃗⃗2 + 𝑆2

2𝐽2
) 𝐽, 

⟨𝑛𝑙𝑗𝑚𝑗|𝐿⃗⃗ + 2𝑆|𝑛𝑙𝑗𝑚𝑗⟩ ≈ (1 +
𝑗(𝑗 + 1) − 𝑙(𝑙 + 1) + 𝑠(𝑠 + 1)

2𝑗(𝑗 + 1)
)

⏟                        
𝑔La

〈𝐽〉. 

𝑔La is called the Landé-factor. Finally, the energy correction is 

for 𝐵⃗⃗ = 𝐵𝑒𝑧 (𝜇𝐵 = ℏ𝑒/2𝑚): 

⟨𝑛𝑙𝑗𝑚𝑗|𝐻𝑍
′ |𝑛𝑙𝑗𝑚𝑗⟩ =

𝑒

2𝑚
〈(𝐿⃗⃗ + 2𝑆)𝐵⃗⃗〉 ≈

𝑔La𝑒𝐵

2𝑚
〈𝐽𝑧〉 = 𝑔La𝜇𝐵𝐵𝑚𝑗 . 

This result is the same as for the normal Zeeman-effect, except 
for 𝑔La and 𝑚𝑗  replaces 𝑚𝑙 . 

 

 

 

 



2.8 Hyperfine-Structure 
The hyperfine-structure is due to the interaction between the 

total angular momentum of the nucleus 𝐼 and of the electrons 𝐽, 
due to the nuclear magnetic moment: 

𝜇𝐼 =
𝑔𝐼𝑒

2𝑚𝑝

𝐼. 

If 𝐹⃗ = 𝐼 + 𝐽 is the total angular momentum and 𝐵⃗⃗𝐽 the magnetic 

field caused by the electrons acting on the nucleus, the energy 
shift is 

𝐸HFS = −𝜇𝐼𝐵⃗⃗𝐽 =
𝑔𝐼𝑒𝐵𝐽

2𝑚𝑝|𝐽|
𝐼𝐽 =

𝑔𝐼𝜇𝑁𝐵𝐽
ℏ

𝐹⃗2 − 𝐼2 − 𝐽2

2|𝐽|

= 𝑔𝐼𝜇𝑁𝐵𝐽
𝐹(𝐹 + 1) − 𝐼(𝐼 + 1) − 𝐽(𝐽 + 1)

2√𝐽(𝐽 + 1)

=
𝐴

2
(𝐹(𝐹 + 1) − 𝐼(𝐼 + 1) − 𝐽(𝐽 + 1)). 

Here, 𝐵⃗⃗𝐽 = 𝐵𝐽𝐽/|𝐽| was assumed and the nuclear magneton 𝜇𝑁 =

𝑒ℏ/2𝑚𝑝 was used. Here, 𝐴 is called the hyperfine-structure 

constant 

𝐴 =
𝑔𝐼𝜇𝑁𝐵𝐽

√𝐽(𝐽 + 1)
. 

HYDROGEN ATOM: 
For the hydrogen atom, the nucleus is only the proton, hence it is 
𝑔𝐼 = 𝑔𝑃 ≈ 5.586. Furthermore, it is 𝐼 = 𝐽 = 1/2 and hence, due 
to the addition rules for angular momenta, 𝐹 = 0,1: 

𝐸HFS =
𝐴

2
(𝐹(𝐹 + 1) − 2 ⋅

3

4
) =

𝐴

2
{
−3/2
1/2

=
𝐴

4
{
−3
1
. 

Hence, the energy gap is just 𝐴 and can be given as 

Δ𝐸 = 𝐴 =
4𝑔𝑝ℏ

4

𝑚𝑝𝑚𝑒
2𝑐2𝑎0

4 ≈ 5.88 ⋅ 10
−6 eV. 

 

2.9 The Helium Atom 
The Hamiltonian of the Helium atom for a fixed nucleus is 

𝐻 = (
𝑝1
2

2𝑚
−

2𝑒2

4𝜋𝜖0𝑟1
)

⏟          
=𝐻1

+ (
𝑝2
2

2𝑚
−

2𝑒2

4𝜋𝜖0𝑟2
)

⏟          
𝐻2

+ (
𝑒2

4𝜋𝜖0|𝑟1 − 𝑟2|
)

⏟          
𝐻′

, 

where 𝐻1 and 𝐻2 are almost the same as for hydrogen. Because 
of the interaction term, separation of variables like 𝜓(𝑟1, 𝑟2) =
𝜙1(𝑟1)𝜙2(𝑟2) doesn’t work. But it does work for 𝐻1 + 𝐻2 alone, 
hence one can solve 𝐻1 + 𝐻2 exactly and treat 𝐻′ as a 
perturbation. 

𝐻𝑖  can be solved like hydrogen with a charge 𝑒 → 𝑒̃ = √2𝑒. 
Hence, the ground state energy of 𝐻𝑖  is 

𝐸𝑖 = −
𝑚𝑒𝑒̃

4

32𝜋𝜖0
2ℏ
= −4

𝑚𝑒𝑒
4

32𝜋𝜖0
2ℏ
= −4 ⋅ 13.6 eV 

and the ground state energy of 𝐻1 + 𝐻2 is 2𝐸𝑖 = −108.8 eV. The 
perturbation term yields for the ground state, using the ground 
state wavefunctions of the hydrogen atoms (with charge 𝑒̃): 

⟨𝜓𝐺𝑆(𝑟1, 𝑟2)|𝐻
′|𝜓𝐺𝑆(𝑟1, 𝑟2)⟩ =

𝑒2

4𝜋𝜖0
∬𝑑3𝑟1𝑑

3𝑟2
|𝜙(𝑟1)|

2|𝜙(𝑟2)|
2

|𝑟1 − 𝑟2|
= 5 2⁄ ⋅ 13.6 eV. 

Hence, the total energy up to first order of perturbation is  
−108.8 eV + 5 2⁄ ⋅ 13.6 eV = −74.8 eV, 

which is not too far away from the true value of 79 eV. 

 

 

 

 

 

 

 

 

 

 

2.10 Many Particle Systems 
For two identical, indistinguishable particles 1 and 2 should 
|𝜓(1,2)|2 = |𝜓(2,1)|2 be true. In general, this yields 𝜓(1,2) =
𝑒𝑖𝜙𝜓(2,1), but only 𝜓(1,2) = ±𝜓(2,1) occours in nature, where 
+ holds for bosons and − for fermions. 
BOSONS: 
For two particles 1,2 in two different 𝜓𝑎 , 𝜓𝑏 , the total 
wavefunction must obey 𝜓(1,2) = 𝜓(2,1) (symmetric): 

𝜓(1,2) = 1 √2⁄ (𝜓𝑎(1)𝜓𝑏(2) + 𝜓𝑎(2)𝜓𝑏(1)). 

FERMIONS: 
For two particles 1,2 in two different 𝜓𝑎 , 𝜓𝑏 , the total 
wavefunction must obey 𝜓(1,2) = −𝜓(2,1) (antisymmetric): 

𝜓(1,2) =
1

√2
(𝜓𝑎(1)𝜓𝑏(2) − 𝜓𝑎(2)𝜓𝑏(1)) =

1

√2
|
𝜓𝑎(1) 𝜓𝑏(1)

𝜓𝑎(2) 𝜓𝑏(2)
|. 

For more than two fermions, using the Slater determinants as a 
total wave function ensures antisymmetry: 

𝜓(1,2, … , 𝑁) =
1

√𝑁!
|

𝜓1(1) 𝜓2(1) ⋯ 𝜓𝑁(1)

𝜓1(2) 𝜓2(2) ⋯ 𝜓𝑁(2)
⋮ ⋮ ⋱ ⋮

𝜓1(𝑁) 𝜓2(𝑁) ⋯ 𝜓𝑁(𝑁)

|. 

Helium ground state: The spatial part of the total wavefunction 
is symmetric, but since electrons a concerned, it has to be 
antisymmetric, which is achieved by including the spin: 

𝜓(1,2) = 𝜓(1)𝜓(2)⏟      
𝜓spatial

(symmetric)

(𝛼(1)𝛽(2) − 𝛼(2)𝛽(1))⏟                
ψspin

(antisymmetric)

√2⁄ . 

𝛼 is a spin-up state, 𝛽 a spin-down state. 
 

2.11 Atomic Units 
By using atomic units, quantities are expressed as dimensionless 
factors of natural constants: 
 → Mass  electron mass 𝑚𝑒  9.109 ⋅ 10−31 kg 
 → Charge proton charge 𝑒 1.602 ⋅ 10−19 C 
 → Ang. Mom. red. Planck’s constant ℏ 1.055 ⋅ 10−34 Js 
 → Length Bohr radius 𝑎0 5.292 ⋅ 10−11 m 
 → Energy Hartree energy 𝐸ℎ  4.360 ⋅ 10−18 J 
The Bohr radius and Hartree energy are 

𝑎0 =
4𝜋𝜖0ℏ

2

𝑚𝑒𝑒
2
,          𝐸ℎ =

𝑒2

4𝜋𝜖0𝑎0
=

𝑚𝑒𝑒
4

16𝜋2𝜖0
2ℏ2

. 

For example the Hamiltonian of the hydrogen atom becomes: 

𝐻 = −
ℏ2

2𝑚𝑒

∇2 −
𝑒2

4𝜋𝜖0𝑟
= 𝐸ℎ (−

4𝜋𝜖0𝑎0
𝑒2

ℏ2

2𝑚𝑒

∇2 −
𝑎0
𝑟
)

= 𝐸ℎ (−
4𝜋𝜖0
𝑒2𝑎0

ℏ2

2𝑚𝑒

(𝑎0∇)
2 −

𝑎0
𝑟
) = 𝐸ℎ (−

1

2
(𝑎0∇)

2 −
𝑎0
𝑟
). 

Now, if 𝑟 is measured in 𝑎0 and 𝐻 in 𝐸ℎ  (𝑟, 𝐻 now dimensionless) 

𝐻 = −
1

2
∇2 −

1

𝑟
. 

 

2.12 Hartree Approximation 
As in 2.11, the Hamiltonian of the helium atom is 

𝐻 = (−
1

2
∇1
2 −

2

𝑟1
) + (−

1

2
∇2
2 −

2

𝑟2
) +

1

𝑟12
,          𝑟12 ≔ |𝑟1 − 𝑟2|. 

The ground state wave function should be of the form 

𝜓(𝑟1, 𝑟2) = 𝜙(𝑟1)𝜙(𝑟2)⏟      
spatial part

(𝛼(1)𝛽(2) − 𝛼(2)𝛽(1))/√2⏟                  
spin part

. 

Now, |𝜙(𝑟2)|
2𝑑3𝑟2 is the probability of finding electron 2 in the 

volume 𝑑3𝑟. Therefore, “in average”, the influence of electron 2 
on electron 1 is 

𝑉eff(𝑟1) ≔ ∫𝑑3𝑟2
|𝜙(𝑟2)|

2

𝑟12
 

and the problem can be reduced to two single particle problems: 

𝐻𝑖
′𝜙(𝑟𝑖) ≈ 𝐸𝑖𝜙(𝑟𝑖),     𝐻𝑖

′ = (−
1

2
∇𝑖
2 −

2

𝑟𝑖
) + 𝑉eff(𝑟𝑖),     𝑖 = 1,2. 

But 𝐻𝑖
′ depends on 𝜙! The method is to iteratively guess the 𝜙 in 

𝐻𝑖
′ and check, if the equation 𝐻𝑖

′𝜙 ≈ 𝐸𝑖𝜙 gives the same 𝜙. 



3 Atomic Transitions 
 

3.1 Time-Dependent Pertubation Theory 
For the time-dependent Schrödinger equation 𝑖ℏ 𝜕Ψ 𝜕𝑡⁄ = 𝐻Ψ, 
the time development of 𝜓 is given by 

Ψ(𝑥, 𝑡) =∑𝑎𝑛 𝜙𝑛(𝑥)𝑒
−𝑖𝐸𝑛𝑡 ℏ⁄⏟        

=𝜓𝑛(𝑥,𝑡)𝑛

,          𝐻𝜙𝑛 = 𝐸𝑛𝜙. 

Consider the problem 𝐻 = 𝐻0 + 𝐻
′(𝑡), where 𝐻0 is not time-

dependent and 𝐻(𝑡) is the perturbation. The idea is, to insert the 
time dependence of 𝐻′(𝑡) completely into the coefficients: 

Ψ(𝑥, 𝑡) = ∑𝑎𝑛(𝑡)𝜓𝑛(𝑥, 𝑡)

𝑛

. 

Plugging this into the Schrödinger equation yields 

𝑖ℏ
𝜕Ψ

𝜕𝑡
= 𝑖ℏ∑(

𝜕𝑎𝑛
𝜕𝑡

𝜓𝑛 + 𝑎𝑛
𝜕𝜓𝑛
𝜕𝑡
)

𝑛

=
!
∑𝑎𝑛(𝐻0 + 𝐻

′)𝜓𝑛
𝑛

= (𝐻0 + 𝐻
′)Ψ. 

Since it is known that 𝐻0𝜓𝑛 = 𝑖ℏ 𝜕𝜓𝑛 𝜕𝑡⁄ , certain terms cancel: 

𝑖ℏ∑
𝜕𝑎𝑛
𝜕𝑡

𝜓𝑛
𝑛

=
!
∑𝑎𝑛𝐻

′𝜓𝑛
𝑛

. 

In Dirac notation, multiply both sides with ⟨𝜙𝑚|: 

𝑖ℏ∑
𝜕𝑎𝑛
𝜕𝑡

⟨𝜙𝑚|𝜓𝑛⟩⏟    
=𝑒−𝑖𝐸𝑛𝑡 ℏ⁄ 𝛿𝑚𝑛𝑛

= 𝑖ℏ𝑒−𝑖𝐸𝑚𝑡 ℏ⁄
𝜕𝑎𝑚
𝜕𝑡

==

==
!
∑𝑎𝑛𝑒

−𝑖𝐸𝑛𝑡 ℏ⁄ ⟨𝜙𝑚|𝐻
′|𝜙𝑛⟩

𝑛

=∑𝑎𝑛⟨𝜙𝑚|𝐻
′|𝜓𝑛⟩

𝑛

 

          ⟺           𝑖ℏ
𝜕𝑎𝑚
𝜕𝑡

=∑𝑎𝑛𝑒
−𝑖(𝐸𝑛−𝐸𝑚)𝑡 ℏ⁄ ⟨𝜙𝑚|𝐻

′|𝜙𝑛⟩

𝑛

. 

This equation is a system of differential equations with which 
𝑎𝑛(𝑡) can be determined and so far there is no approximation. 
For a two level system and for 𝑎1(0) = 1, 𝑎2(0) = 0 with a small 
perturbation it is 𝑎1(𝑡) ≈ 1, 𝑎2(𝑡) ≈ 0 and the equation becomes: 

𝑖ℏ
𝜕𝑎2
𝜕𝑡

= 𝑎1𝑒
−𝑖Δ𝐸𝑡 ℏ⁄ ⟨𝜙2|𝐻

′|𝜙1⟩ + 𝑎2⟨𝜙2|𝐻
′|𝜙2⟩

≈ 𝑒−𝑖Δ𝐸𝑡 ℏ⁄ ⟨𝜙2|𝐻
′|𝜙1⟩,          Δ𝐸 ≔ 𝐸1 − 𝐸2. 

It is not specified here, whether 𝐸1 > 𝐸2 or 𝐸1 < 𝐸2. 
 

3.2 Stimulated Absorption/Emission 
Consider 𝐻 = 𝐻atom +𝐻

′ with 𝐻′ being a (classical) 𝑧-polarized 
light beam of frequency 𝜔 and intensity ℰ0

2: 
𝐻′ = 𝑒𝑧ℰ0 cos𝜔𝑡 = 𝑒𝑧ℰ0(𝑒

𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡)/2. 
Hence, the last equation of 3.1 becomes (recall Δ𝐸 ≔ 𝐸1 − 𝐸2): 

𝑖ℏ
𝜕𝑎2
𝜕𝑡

≈ 𝑒−𝑖Δ𝐸𝑡 ℏ⁄ ⟨𝜙2|𝐻
′|𝜙1⟩

=
𝑒ℰ0
2
⟨𝜙2|𝑧|𝜙1⟩⏟      

=𝑧21

(𝑒𝑖(ℏ𝜔−Δ𝐸)𝑡 ℏ⁄ + 𝑒−𝑖(ℏ𝜔+Δ𝐸)𝑡 ℏ⁄ ). 

To solve for 𝑎2 one has to integrate: 

𝑎2(𝑡) =
𝑒ℰ0
2𝑖ℏ

𝑧21∫ 𝑑𝑡′ (𝑒𝑖(ℏ𝜔−Δ𝐸)𝑡
′/ℏ + 𝑒−𝑖(ℏ𝜔+Δ𝐸)𝑡

′/ℏ)
𝑡

0

= −
𝑒ℰ0
2
𝑧21 (

𝑒𝑖(ℏ𝜔−Δ𝐸)𝑡 ℏ⁄ − 1

ℏ𝜔 − Δ𝐸
+
𝑒−𝑖(ℏ𝜔+Δ𝐸)𝑡 ℏ⁄ − 1

−ℏ𝜔 − Δ𝐸
). 

The probability for the system to be in state 2 is |𝑎2(𝑡)|
2, which 

is tedious to calculate. But obviously, |𝑎2(𝑡)|
2 is big for Δ𝐸 =

±ℏ𝜔, which is the expected result. 
Stimulated absorption occurs for 𝐸2 > 𝐸1, Δ𝐸 = 𝐸1 − 𝐸2 = −ℏ𝜔, 
stimulated emission occurs for 𝐸1 > 𝐸2, Δ𝐸 = 𝐸1 − 𝐸2 = ℏ𝜔 (or 
the other way around, if 𝑎1 had been considered instead of 𝑎2). 
Consider absorption and assume Δ𝐸 ≈ −ℏ𝜔: 

|𝑎2(𝑡)|
2 ≈

𝑒2ℰ0
2

4
|𝑧21|

2 |
𝑒−𝑖(ℏ𝜔+Δ𝐸)𝑡 ℏ⁄ − 1

−ℏ𝜔 − Δ𝐸
|

2

=
𝑒2ℰ0

2

4
|𝑧21|

2 |
𝑒−𝑖(ℏ𝜔+Δ𝐸)𝑡 2ℏ⁄ − 𝑒𝑖(ℏ𝜔+Δ𝐸)𝑡 2ℏ⁄

−ℏ𝜔 − Δ𝐸
𝑒−𝑖(ℏ𝜔+Δ𝐸)𝑡 2ℏ⁄ |

2

=
𝑒2ℰ0

2

ℏ2
|𝑧21|

2
sin2((𝜔 − 𝜔21)𝑡 2⁄ )

(𝜔 − 𝜔21)
2

,          𝜔21 ≔ −Δ𝐸 ℏ⁄ > 0

=
𝑒2ℰ0

2

ℏ2
|𝑧21|

2
sin2 𝑥

𝑥2
𝑡2

4
,                                  𝑥 ≔ (𝜔 − 𝜔21)𝑡/2. 

 

3.3 Selection Rules 
Recall the probability for a transition from 3.2: 

|𝑎2(𝑡)|
2 ≈ 𝑒2ℰ0

2|𝑧21|
2
sin2((ℏ𝜔 + Δ𝐸)𝑡 2ℏ⁄ )

(ℏ𝜔 + Δ𝐸)2
,          Δ𝐸 ≔ 𝐸1 − 𝐸2. 

If |𝑧21|
2 = 0, the transition is forbidden. 

Z-POLARISATION: 
Consider the hydrogen atom with wave functions 𝜓𝑛𝑙𝑚 = 𝑌𝑙𝑚𝑅𝑛𝑙. 
If the light beam is 𝑧-polarized, 𝑧21 is, using 𝑧 = 𝑟 cos 𝜃: 

𝑧21 = ⟨𝑛
′𝑙′𝑚′|𝑧|𝑛𝑙𝑚⟩ = ∫𝑑𝑟 𝑟3𝑅𝑛′𝑙′

∗ 𝑅𝑛𝑙∫𝑑Ω 𝑌𝑙′𝑚′
∗ 𝑌𝑙𝑚 cos 𝜃. 

Since the angle 𝜑 in the spherical harmonics appears only as a 
phase factor 𝑒𝑖𝑚𝜑 , it is: 

𝑧21 ~ ∫ 𝑑𝜑 𝑒−𝑖𝑚
′𝜑𝑒𝑖𝑚𝜑

2𝜋

0

= 2𝜋𝛿𝑚𝑚′ . 

Hence, one selection rule is, that only 𝑚 = 𝑚′ or in other words 
Δ𝑚 = 0 transitions are allowed. 
X-POLARIZATION: 
If the light beam is 𝑥-polarized, 𝑧21 is, using 𝑥 = 𝑟 cos𝜑 sin 𝜃: 

𝑧21 = ⟨𝑛
′𝑙′𝑚′|𝑥|𝑛𝑙𝑚⟩ ~ ∫ 𝑑𝜑 𝑒−𝑖𝑚

′𝜑𝑒𝑖𝑚𝜑 cos𝜑
2𝜋

0

=
1

2
∫ 𝑑𝜑 𝑒−𝑖𝑚

′𝜑𝑒𝑖𝑚𝜑(𝑒𝑖𝜑 + 𝑒−𝑖𝜑)
2𝜋

0

=
1

2
∫ 𝑑𝜑 (𝑒−𝑖(𝑚−𝑚

′+1)𝜑 + 𝑒−𝑖(𝑚−𝑚
′−1)𝜑)

2𝜋

0

. 

Hence, only transitions 𝑚 = 𝑚′ ± 1 or Δ𝑚 = ±1 are allowed. 𝑦-
polarization yields the same result. 
SUMMARY OF THE SELECTION RULES: 
All the selection rules are 

Δ𝑚 = 0,±1;           Δ𝑙 = ±1. 
The Δ𝑙-selection rule is also due to the integral |𝑧21|

2, but will be 
given here without proof. 
 

3.4 Stimulation with Non-Monochromatic Light 
If there is non-monochromatic light, meaning different values 
for 𝜔, the intensity depends on 𝜔 and ℰ̃0

2(𝜔)𝑑𝜔 is the total 
intensity of the light beam in a section 𝑑𝜔. Hence, the transition 
probability due to the frequency 𝜔 becomes (starting from 3.2): 

|𝑎2(𝑡)|
2 = ∫𝑑𝜔 

𝑒2ℰ̃0
2(𝜔)

ℏ2
|𝑧21|

2
sin2 𝑥

𝑥2
𝑡2

4

=
𝑒2|𝑧21|

2

ℏ2
𝑡

2
 ∫𝑑𝑥 ℰ̃0

2(𝑥)
sin2 𝑥

𝑥2
. 

For large 𝑡, sin2 𝑥 𝑥2⁄ ≈ 𝜋𝛿(𝑥) (the factor 𝜋 is because 
integrating sin2 𝑥 𝑥2⁄  yields 𝜋 instead of 1) and only the value 
𝑥′ = 0 ⟺ 𝜔 = 𝜔21 matters: 

|𝑎2(𝑡)|
2 ≈

𝜋𝑒2

2ℏ2
ℰ̃0
2(𝜔21)|𝑧21|

2𝑡 =
𝜋𝑒2

𝜖0ℏ
2
𝑈(𝜔21)|𝑧21|

2𝑡. 

In the last step, the solution was rewritten in terms of the energy 
densitiy 𝑈(𝜔) = 𝜖0ℰ̃0

2/2. The transition rate 𝜆 is then given by: 

𝜆 =
𝜋𝑒2

3𝜖0ℏ
2
𝑈(𝜔21)|𝑟21|

2. 

Here, also the 𝑥- and 𝑦-polarization was taken into account. 
 

3.5 Fermi’s Golden Rule 
Especially in many atom systems it is also possible to have many 
possible transitions energies ℏ𝜔12 described by a densitiy of 
states function 𝑔(𝜔21). Similar to 3.4 those possibilities can be 
summed up with an integral. Start from 3.2 and recall 𝑥 ≔
(𝜔 − 𝜔21)𝑡/2: 

|𝑎2(𝑡)|
2 =

𝑒2ℰ0
2

ℏ2
|𝑧21|

2
𝑡2

4
∫𝑑𝜔21 𝑔(𝜔21)

sin2 𝑥

𝑥2

≈
𝜋𝑒2ℰ0

2𝑡2

4ℏ2
|𝑧21|

2∫𝑑𝑥 𝑔(𝑥)𝛿(𝑥) =
𝜋𝑒2ℰ0

2𝑡2

4ℏ2
|𝑧21|

2𝑔(𝜔). 

Note, that 𝑔(𝑥 = 0) = 𝑔(𝜔21 = 𝜔). 

 

 

 

 



3.6 Einstein Coefficients, Spontaneous Emission 
EINSTEIN COEFFICIENTS: 
To derive Planck’s black body radiation formula 

𝑈(𝜔, 𝑇)𝑑𝜔 =
ℏ𝜔3

𝜋2𝑐3
1

𝑒ℏ𝜔 𝑘𝑇⁄ − 1
𝑑𝜔, 

Einstein introduced his coefficients (probabilities) 
 → 𝐴 for spontaneous emission 
 → 𝑈𝐵𝐸  for stimulated emission (the probability is ~ 𝑈) 
 → 𝑈𝐵𝐴  for stimulated absorption (the probability is ~ 𝑈) 
and in equilibrium 𝑁1𝐵𝐴𝑈 = 𝑁2𝐵𝐸𝑈 +𝑁2𝐴 should hold, where 
𝑁1 and 𝑁2 are the number of particles in the lower and higher 
level respectively, for which is known that (ℏ𝜔 = 𝐸2 − 𝐸1): 

𝑁2
𝑁1
= 𝑒−ℏ𝜔 𝑘𝑇⁄ =

𝐵𝐴𝑈

𝐵𝐸𝑈 + 𝐴
    ⟺      𝑈 =

𝐴

𝐵𝐴𝑒
ℏ𝜔 𝑘𝑇⁄ − 𝐵𝐸

. 

To equal Planck’s result, it must be 𝐵 ≔ 𝐵𝐴 = 𝐵𝐸 , which would 
also be the result if emission is considered as was absorption in 
3.2. This yields, from Planck’s formula: 

𝐴

𝐵
=
ℏ𝜔3

𝜋2𝑐3
    ⟺      𝐴 =

ℏ𝜔3

𝜋2𝑐3
𝐵 =

𝑒2𝜔3

3𝜋𝜖0ℏ𝑐
3
|𝑟21|

2. 

Here, the transition probability 𝜆 = 𝑈𝐵 was used from 3.4. 
SPONATNEOUS EMISSION: 
If 𝑁2 atoms a excited, the change in time due to the spontaneous 
emission coefficient is 

𝑑𝑁2
𝑑𝑡

= −𝐴𝑁2     ⟺      𝑁2(𝑡) = 𝑁2(0)𝑒
−𝐴𝑡 = 𝑁2(0)𝑒

−𝑡/𝜏  

with 𝜏 = 1/𝐴. If the excited state can decay to many states, it is 
𝐴 = ∑ 𝐴𝑖𝑖 , 𝐴𝑖  being the emission probabilities for the different 
decays. Hence, the life time is given by 

𝜏 =
3𝜋𝜖0ℏ𝑐

3

𝑒2𝜔3
1

|𝑟21|
2
. 



4 Molecular Physics 
 

4.1 Principles of Ionic Bonding 
To form an ionic bond between atoms 𝐴 and 𝐵, they have to be 
ionized to 𝐴+ and 𝐵−. For the reaction 𝐴 → 𝐴+ the ionization 
energy 𝐸ion is necessary, for the reaction 𝐵 → 𝐵−, the system 
gains the electron affinity 𝐸aff. Usually is 
𝐸ion > 0,     𝐸aff < 0,     |𝐸ion| > |𝐸aff|,     Δ𝐸 ≔ 𝐸ion + 𝐸aff > 0. 

After the energy Δ𝐸 was invested to transfer the electron, energy 
can be regained by coulombic attraction and the total energy 
becomes, relative to single atoms 𝐴, 𝐵 

𝐸(𝑅) = Δ𝐸 −
𝑒2

4𝜋𝜖0𝑅
+ (repulsion term for very small 𝑅), 

where 𝑅 is the distance between 𝐴+ and 𝐵−. There is a critical 
radius 𝑅𝑐, such that 𝐸(𝑅) < 0 for 𝑅 < 𝑅𝑐 and the bonding pays 
off. Including the repulsion term, there is also an equilibrium 
separation 𝑟0 for which 𝐸(𝑅) is minimized. 
 

4.2 Covalent Bonds: Born-Oppenheimer 

Approximation 
Consider covalent bonding between two atoms. 
Since the nucleic mass (and thereby the time scale) is much 
larger than the electron mass, it is reasonable to treat the motion 
of the nuclei and electrons separately; that is to say assume the 
nuclei to be fixed in a distance 𝑅. The motion of the nuclei can be 
split into relative and center of mass coordinates (the electron 
influence on the latter is neglected). Considering only the 

relative motion 𝑅⃗⃗ of the nuclei, the Hamiltonian becomes 

𝐻 = −
ℏ2

2𝑚
∇
𝑅⃗⃗
2 +

𝑍𝐴𝑍𝐵𝑒
2

4𝜋𝜖0𝑅
+

𝑒2

4𝜋𝜖0
∑

1

|𝑟𝑖 − 𝑟𝑗|𝑖<𝑗

+∑(−
ℏ2

2𝑚
∇𝑟𝑖
2 −

𝑒2

4𝜋𝜖0
(

𝑍𝐴

|𝑟𝑖 − 𝑅⃗⃗𝐴|
+

𝑍𝐵

|𝑟𝑖 − 𝑅⃗⃗𝐵|
))

𝑖

= −
ℏ2

2𝑚
∇
𝑅⃗⃗
2 + 𝐻el, 

where 𝐻el is the electronic Hamiltonian only for which 𝑅 is only 
an parameter and no operator. Thereby, the separation 
approach 

𝜓({𝑟𝑖}, 𝑅⃗⃗) ≈ 𝜓nucl(𝑅⃗⃗)𝜓el({𝑟𝑖}) 

is used, which is not exactly true, since 𝑅⃗⃗ and {𝑟𝑖} are coupled. 
The eigenvalues of 𝐻el will depend on 𝑅, hence 𝐸el(𝑅), which is 
expected to be a function with a minimum at some equilibrium 
bonding distance 𝑅0. By a Taylor expansion at 𝑅 = 𝑅0 (𝑅0 is a 
minimum, hence no 1st  order term) 

𝐸el(𝑅) ≈ 𝐸el(𝑅0) +
1

2

𝑑2𝐸el
𝑑𝑅2

|
𝑅0

(𝑅 − 𝑅0)
2 

the distance oscillation of the two nuclei will be approximately 
harmonic. Moreover, there will also be a rotational motion with 
the energy 

𝐿2

2𝐼
=
ℏ2𝑙(𝑙 + 1)

2𝜇𝑅0
2 . 

For more details on the motion of the nuclei see 4.5. 

 

 

 

 

 

 

 

 

 

 

 

 

4.3 The Molecular Ion of Hydrogen 
Consider the simplest case: H2

+. The electronic Hamiltonian is 

𝐻el = −
1

2
∇2 −

1

|𝑟 − 𝑅⃗⃗𝐴|
−

1

|𝑟 − 𝑅⃗⃗𝐵|
+
1

𝑅
= −

1

2
∇2 −

1

𝑟𝐴
−
1

𝑟𝐵
+
1

𝑅
, 

which actually is exactly solvable. Here, however, it will be 
approximately solved by the method “linear combination of 
atomic orbitals” or “LCAO”, which labels the ansatz 

𝜓el =∑ (𝑐𝐴𝑖𝜙𝐴𝑖 + 𝑐𝐵𝑖𝜙𝐵𝑖)
∞

𝑖=1
, 

where 𝜙𝐴𝑖  and 𝜙𝐵𝑖  are the atomic orbitals of the two atoms 𝐴, 𝐵 
and the index 𝑖 sums up the single atomic states (hence, the 
quantum numbers 𝑛, 𝑙, 𝑚). As shown in 1.2, this yields an matrix 
equation (ℋ − 𝐸𝒮)𝑐 = 0. 
ENERGIES: 
For the roughest approximation, consider only the ground states 
of the two atoms. Therefore, ℋ ∈ ℂ2×2 and 

(ℋ − 𝐸𝒮)𝑐 = (
𝐻𝐴𝐴 − 𝐸𝑆𝐴𝐴 𝐻𝐴𝐵 − 𝐸𝑆𝐴𝐵
𝐻𝐵𝐴 − 𝐸𝑆𝐵𝐴 𝐻𝐵𝐵 − 𝐸𝑆𝐵𝐵

) (
𝑐𝐴
𝑐𝐵
) = 0, 

where 𝐻𝑋𝑌 = ⟨𝜙𝑋|𝐻|𝜙𝑌⟩ and 𝑆𝑋𝑌 = ⟨𝜙𝑋|𝜙𝑌⟩ (𝑆𝑋𝑋 = 1). Consider: 

𝐻𝐴𝐴 = ⟨𝜙𝐴| (−
1
2
∇2 −

1
𝑟𝐴
) |𝜙𝐴⟩⏟              

=𝐸0

+ ⟨𝜙𝐴| (−
1
𝑟𝐵
+
1
𝑅
) |𝜙𝐴⟩⏟            

=𝐽(𝑅)

, 

where 𝐸0 = −13.6 eV. Out of symmetry, it is 𝐻𝐵𝐵 = 𝐻𝐴𝐴 . And it is 

𝐻𝐵𝐴 = ⟨𝜙𝐵| (−
1
2
∇2 −

1
𝑟𝐴
) |𝜙𝐴⟩⏟              

=𝐸0𝑆𝐵𝐴

+ ⟨𝜙𝐵| (−
1
𝑟𝐵
+
1
𝑅
) |𝜙𝐴⟩⏟            

=𝐾(𝑅)

= 𝐻𝐴𝐵
∗ , 

such that the matrix becomes (𝑆 ≔ 𝑆𝐵𝐴 = 𝑆𝐴𝐵): 

(ℋ − 𝐸𝒮)𝑐 = (
𝐸0 + 𝐽 − 𝐸 𝐸0𝑆 + 𝐾 − 𝐸𝑆
𝐸0𝑆 + 𝐾 − 𝐸𝑆 𝐸0 + 𝐽 − 𝐸

) (
𝑐𝐴
𝑐𝐵
) = 0. 

Non-trivial solution require det(ℋ − 𝐸𝒮) = 0 which yields: 

𝐸0 + 𝐽 − 𝐸 = ±(𝐸0𝑆 + 𝐾 − 𝐸𝑆)     ⟺     𝐸± = 𝐸0 +
𝐽 ± 𝐾

(1 ± 𝑆)
 

The integrals 𝑆, 𝐽, 𝐾 turn out to be 
          𝑆(𝑅) = 𝑒−𝑅(1 + 𝑅 + 𝑅2 3⁄ ), 
          𝐽(𝑅) = 𝑒−2𝑅(1 + 1 𝑅⁄ ), 
          𝐾(𝑅) = −𝑒−𝑅(1 + 𝑅) + 𝑆(𝑅) 𝑅⁄ . 
The plot shows, that 𝐸+ is the bonding 
and 𝐸− the anti-bonding state 
(𝐸±0 ≔ 𝐸± − 𝐸0). 
COEFFICIENTS AND WAVEFUNCTIONS: 
Out of symmetry, it should be 𝑐𝐴 = ±𝑐𝐵 . Normalization yields 

⟨𝜓el|𝜓el⟩ = ∫𝑑
3𝑟 (𝑐𝐴

∗𝜙𝐴
∗ + 𝑐𝐵

∗𝜙𝐵
∗ )(𝑐𝐴𝜙𝐴 + 𝑐𝐵𝜙𝐵)

= 𝑐𝐴
∗𝑐𝐴 + 𝑐𝐴

∗𝑐𝐵𝑆 + 𝑐𝐴𝑐𝐵
∗𝑆 + 𝑐𝐵𝑐𝐵

∗ = 2|𝑐𝐴|
2 ± 2|𝑐𝐴|

2𝑆 =
!
1 

       ⟺      𝑐𝐴 =
1

√2(1 ± 𝑆)
     for 𝑐𝐴 = ±𝑐𝐵 . 

Therefore, the bonding state 𝜓+ and the anti-bonding state 𝜓− is: 

𝜓± =
1

√2(1 ± 𝑆)
(𝜙𝐴 ± 𝜙𝐵). 

 

4.4 Qualitative Remarks on Bonding by LCAO 
BOND ORDER: 
Anti-bonding states do not contribute to bonding, 
since their energy is higher than the energy of 
separated atoms. However, some of the 16 
electrons of the molecule 𝑂2 also occupy anti- 
bonding states. It is just that more bonding states 
are occpued. The bond order is 

          ((𝑒− bonding) − (𝑒− anti bonding)) 2⁄ . 

In the right diagram, anti-bonding states are 
denoted by a star (*). Its bond order is 4, to which 
only 2𝑝 states contribute (1𝑠, 2𝑠: bond order 0). 
ENERGY BANDS: 
For two atoms, each atomic orbital splits into 
two molecular orbitals (MO’s). For 108 atoms, 
they split into 108 molecular orbitals. Hence, 
for huge molecules (metals), there are energy 
bands and band gaps. 
 
 



4.5 The Vibrational-Rotational Spectrum 
Recall from 4.2 

𝐻 = −
ℏ2

2𝑚
∇
𝑅⃗⃗
2 + 𝐻el,          𝜓({𝑟𝑖}, 𝑅⃗⃗) ≈ 𝜓nucl(𝑅⃗⃗)𝜓el({𝑟𝑖}). 

Using 4.3, it is 

𝐻𝜓({𝑟𝑖}, 𝑅⃗⃗) = 𝜓el({𝑟𝑖}) (−
ℏ2

2𝑚
∇
𝑅⃗⃗
2 + 𝐸el(𝑅))𝜓nucl(𝑅⃗⃗), 

therefore, the remaining nuclear problem with the total energy 
𝐸 is 

(−
ℏ2

2𝑚
∇
𝑅⃗⃗
2 + 𝐸el(𝑅))𝜓nucl(𝑅⃗⃗) = 𝐸𝜓nucl(𝑅⃗⃗). 

Considering the relative motion only means 𝑚 → 𝜇 (reduced 
mass). Since 𝐸el is spherical symmetrical, the solution is 

𝜓nucl(𝑅⃗⃗) = ℛ(𝑅)𝑌𝑙𝑚(𝜃, 𝜑). This yields 

−
ℏ2

2𝜇

1

𝑅2
𝑑

𝑑𝑅
(𝑅2

𝑑

𝑑𝑅
ℛ(𝑅)) + (

𝑙(𝑙 + 1)ℏ2

2𝜇𝑅2
+ 𝐸el(𝑅))ℛ(𝑅)

= −
ℏ2

2𝜇

𝑑2

𝑑𝑅2
𝜒(𝑅) + (

𝑙(𝑙 + 1)ℏ2

2𝜇𝑅2
+ 𝐸el(𝑅))𝜒(𝑅) = 𝐸𝜒(𝑅), 

where 𝜒(𝑟) ≔ 𝑅 ⋅ ℛ(𝑅). The rotational and vibrational motion is 
couple, since the rotational term depends on 𝑅 like ~ 𝑅−2. Since 
it is always 𝑅 ≈ 𝑅0, where 𝑅0 is the equilibrium separation 
(minimum of 𝐸el(𝑅)), one can approximately decouple the two 
motions by taking 𝑙(𝑙 + 1)ℏ2 2𝜇𝑅2⁄ ≈ 𝑙(𝑙 + 1)ℏ2 2𝜇𝑅0

2⁄ . 
Furthermore, one can expand the energy around its minimum: 

𝐸el(𝑅) ≈ 𝐸el(𝑅0) +
1

2

𝑑2𝐸el
𝑑𝑅2

|
𝑅0⏟    

=𝑘

(𝑅 − 𝑅0)
2. 

Hence, the Schrödinger equation can be written as 

(−
ℏ2

2𝜇

𝑑2

𝑑𝑅2
+
𝑘

2
(𝑅 − 𝑅0)

2)𝜒(𝑅)

= (𝐸 −
𝑙(𝑙 + 1)ℏ2

2𝜇𝑅0
2 − 𝐸el(𝑅0)) 𝜒(𝑅), 

which is just a harmonic oscillator and the total result is 

𝐸 = 𝐸el(𝑅0) + ℏ𝜔 (𝑛 +
1

2
) +

𝑙(𝑙 + 1)ℏ2

2𝜇𝑅0
2 ≡ 𝐸𝑛𝑙 ,          𝜔 ≔ √𝑘 𝜇⁄ . 

The energies depend on two quantum numbers 𝑛, 𝑙. Note that for 
small 𝑙 (e.g. 𝑙 < 6) it is 

𝐸(𝑛+1),𝑙 − 𝐸𝑛𝑙 > 𝐸𝑛,(𝑙+1) − 𝐸𝑛𝑙 . 

Moreover, similar to 3.3, there are the selection rules 
Δ𝑛 = ±1,          Δ𝑙 = ±1. 

The allowed transitions thus have the following energies: 

𝐸𝑛+1,𝑙+1 − 𝐸𝑛𝑙 = ℏ𝜔 +
ℏ2

2𝜇𝑅0
2
(2𝑙 + 3) 

𝐸𝑛±1,𝑙±1 − 𝐸𝑛𝑙

= ℏ𝜔 (𝑛 ± 1 − 𝑛)⏟        
=±1

+
ℏ2

2𝜇𝑅0
2 ((𝑙 ± 1)(𝑙 ± 1 + 1) − 𝑙(𝑙 + 1))⏟                    

=±2𝑙±1+1 

 

Those transitions yield the vibrational-rotational spectrum as 
shown below (here, it is always that 𝑛 changes 0 → 1 and the 
numbers written on the peak is the transition of 𝑙): 

 
From the data of such kind of spectrum, the equilibrium 
separation 𝑅0 and the coupling constant 𝑘 can be determined. 

 

 

 

4.6 Mulliken Theory vs. Heitler-London 
The LCAO approximation of molecular bonding from 4.3 was 
developed by R. Mulliken. For the H2 molecule (two electrons), 
the form of the total spatial electronic wavefunction is 

𝜓 = 𝜓trial(1)𝜓trial(2) = (𝜙𝐴(1) + 𝜙𝐵(1))(𝜙𝐴(2) + 𝜙𝐵(2))

= 𝜙𝐴(1)𝜙𝐵(2) + 𝜙𝐵(1)𝜙𝐴(2)⏟                  
=𝜓VB

+ 𝜙𝐴(1)𝜙𝐴(2) + 𝜙𝐵(1)𝜙𝐵(2)⏟                  
𝜓ion

. 

Here, only one single atomic state is considered, namely 𝜓𝐴 and 
𝜓𝐵  of atom 𝐴 and 𝐵 respecitvely and 1 and 2 mark the two 
electrons. Obviously, 𝜓 can be divided into a valence bond park 
𝜓VB and a ionic bond part 𝜓ion. The approach of Heitler-London 
used only 𝜓VB. However, the most accurat results can be 
achieved by varying the parameters 𝑐1 and 𝑐2 in 

𝜓 = 𝑐1𝜓VB + 𝑐2𝜓ion. 
 

4.7 The Hückel Molecular Orbital Theory for Benzene 
ONE DELOCALEIZED ORBITAL: 
Consider only the third valence electron of each carbon 
ato and take a LCAO trial wave function 

∑𝑐𝑛𝜙𝑛

6

𝑛=1

. 

Using the matrix in 1.2, the definitions/approximations 
     𝛼 ≔ 𝐻𝑖𝑖 ,     𝑏 ≔ 𝛽 ≔ 𝐻〈𝑖𝑗〉 < 0,     𝑆𝑖𝑗 = 𝛿𝑖𝑗 

(where 〈𝑖𝑗〉 indicates that this holds only for nearest 
neighbours) yields the equation: 

(ℋ − 𝐸𝒮)𝑐 = 

(

 
 
 

𝑎 𝑏 𝑏
𝑏 𝑎 𝑏

𝑏 𝑎 𝑏
𝑏 𝑎 𝑏

𝑏 𝑎 𝑏
𝑏 𝑏 𝑎 )

 
 
 

 𝑐 = 0,               𝑎 ≔ 𝛼 − 𝐸. 

Using 𝑎̃ ≔ 𝑎2, non-trivial solutions have to obey 

det(ℋ − 𝐸𝒮) = 𝑎̃3 − 6𝑎̃2𝑏2 + 9𝑎̃𝑏4 − 4𝑏6 =
!
0 

which has only the two solutions 𝑎̃1 = 𝑏
2 and 𝑎̃2 = 4𝑏

2, because 
𝑎̃1 has multiplicity two: 

𝜕 𝜕𝑎̃⁄ det(ℋ − 𝐸𝒮)|𝑎̃1 = 3𝑏
4 − 12𝑏4 + 9𝑏4 = 0. 

Hence, 𝑎̃1 has four eigenstates (two for each 𝑎1,2) and 𝑎̃2 has two 

(one for each 𝑎3,4), where 

    𝑎1,2 = ±√𝑎̃1 = ±𝑏 = ±𝛽 =
!
𝛼 − 𝐸1,2          ⟺      𝐸1,2 = 𝛼 ± 𝛽, 

    𝑎3,4 = ±√𝑎̃2 = ±2𝑏 = ±2𝛽 =
!
𝛼 − 𝐸3,4     ⟺      𝐸3,4 = 𝛼 ± 2𝛽. 

The ground state energy for the six electrons is 
therefore (recall, that 𝛽 < 0): 
         𝐸 = 2(𝛼 + 2𝛽) + 4(𝛼 + 𝛽) = 6𝛼 + 8𝛽 
THREE DOUBLE BONDS: 
Before Hückel established the delocalized orbital, it was 
thought that benzene has three double bonds. Hence, the 
matrix is (using, as before, 𝑎 ≔ 𝛼 − 𝐸, 𝑏 ≔ 𝛽) 

ℳ = 

(

 
 
 

𝑎 𝑏
𝑏 𝑎

𝑎 𝑏
𝑏 𝑎

𝑎 𝑏
𝑏 𝑎 )

 
 
 
. 

In the same way as before, this yields 

detℳ = 𝑎̃3 − 3𝑎̃2𝑏2 + 3𝑎̃𝑏4 − 𝑏6 =
!
0, 

where the only solution 𝑎̃0 = 𝑏
2 has multiplicity three. 

Therefore, 𝑎1,2 has three eigenstates each, where 

𝑎1,2 = ±√𝑎̃0 = ±𝑏 = ±𝛽 = 𝛼 − 𝐸1,2     ⟺      𝐸1,2 = 𝛼 ± 𝛽. 

Hence, the ground state energy is 
                        𝐸 = 6(𝛼 + 𝛽) = 6𝛼 + 6𝛽. 
Since 𝛽 < 0, this energy is higher than for the 
delocolaized orbitals. 

 

 

 

 

 

 



4.8 Hybridization 
SP-HYPRIDIZATION: 
Consider one electron in the 𝑠-state (𝑙 = 0) and a second in a 𝑝-
state (𝑙 = 1). Then, the wavefunction can be written as the 
following Slater determinand: 

𝜓(1,2) = |
𝜓𝑠(1) 𝜓𝑝(1)

𝜓𝑠(2) 𝜓𝑝(2)
|. 

Introducing hybridized orbitals 

𝜓𝐴 ≔ (𝜓𝑠 −𝜓𝑝) √2⁄ ,          𝜓𝐵 ≔ (𝜓𝑠 + 𝜓𝑝) √2⁄  

and writing them as a slater determinand yields 

|
𝜓𝐴(1) 𝜓𝐵(1)

𝜓𝐴(2) 𝜓𝐵(2)
|, 

which is, if expanded, just equal to 𝜓(1,2). So the situation has 
not changed, only the description. 
SP2-HYPRIDIZATION: 
Consider C2H4. Each carbon has four valence electrons (all at 
𝑛 = 2), which are in states |200⟩, |210⟩, |2,1, −1⟩, |211⟩. Now, 
describe them as 

𝜓𝑠 ≔ |200⟩,          𝜓𝑝𝑧 ≔ |210⟩, 

𝜓𝑝𝑥 ≔ (|2,1, −1⟩ − |211⟩) √2⁄ ,      𝜓𝑝𝑦 ≔ (|2,1, −1⟩ + |211⟩) √2⁄ , 

hence as 𝑠, 𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧 orbitals, where the 𝑝-orbitals have all the 

same shape but along different axes. One electron of each carbon 
atom is in a pure 𝑝-orbital (lets say 𝑝𝑦) an forms a 𝜋-bond (half 

of the double bond). Now, consider the following hybrid orbitals 
𝜉𝑖  of the 𝑠, 𝑝𝑥  and 𝑝𝑧 states: 
          𝜉1 = 𝑎𝜓𝑠 + 𝑏1𝜓𝑝𝑧 + 𝑐1𝜓𝑝𝑥  

          𝜉2 = 𝑎𝜓𝑠 + 𝑏2𝜓𝑝𝑧 + 𝑐2𝜓𝑝𝑥 

          𝜉3 = 𝑎𝜓𝑠 + 𝑏3𝜓𝑝𝑧 + 𝑐3𝜓𝑝𝑥 

where it is assumed that all hybrid oribtals have the same 

fraction of the 𝜓𝑠 state (hence 𝑎 = 1/√3) and that 𝜉𝑖  are 
orthonormal. Next, choose to place the 𝑧-direction along 𝜉1 such 

that 𝑐1 = 0. Normalization then yields 𝑏1 = √2 3⁄  and thus 

𝜉1 = √1 3⁄ 𝜓𝑠 + √2 3⁄ 𝜓𝑝𝑧 . 

Requiring 𝜉2 being orthogornal to 𝜉1 yields 

𝜉1𝜉2 = 𝑎
2 + 𝑏1𝑏2 =

1

3
+ √

2

3
𝑏2 =

!
1    ⟹      𝑏2 = −

1

√6
, 

normalization yields 𝑐2 = 1/√2 and thus 

𝜉2 = √1 3⁄ 𝜓𝑠 − √1 6⁄ 𝜓𝑝𝑧 + √1 2⁄ 𝜓𝑝𝑥 . 

Similarly 𝜉3 turns out to be 

𝜉3 = √1 3⁄ 𝜓𝑠 − √1 6⁄ 𝜓𝑝𝑧 − √1 2⁄ 𝜓𝑝𝑥 . 

The maximum of 𝜉2 w.r.t. to 𝜃 is obtained by (note 𝜕𝜃𝜓𝑠 = 0) 
𝜕𝜉2
𝜕𝜃

=
𝜕

𝜕𝜃
(−√1 6⁄ 𝜓𝑝𝑧 + √1 2⁄ 𝜓𝑝𝑥)

= 𝑅21(𝑟)
𝜕

𝜕𝜃
(−√1 6⁄ 𝑌10 + 1 2⁄ (𝑌1,−1 − 𝑌11))

= √3 4𝜋⁄ 𝑅21(𝑟)
𝜕

𝜕𝜃
(−√1 6⁄ cos 𝜃 + 1 √2⁄ sin 𝜃 cos 𝜑) = 0 

Considering the 𝑥-𝑧-plane only means 𝜑 = 0 and hence 

tan 𝜃 = −√3     ⟺      𝜃 = 120°. 
Similarly, the angle of 𝜉3 is 𝜃 = −120°. 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.9 The Underlying Idea of Hybridization 
Consider a general molecule 𝐴𝐵2 which bonds like 𝐵 − 𝐴 − 𝐵. 
Let the valence eletron of each of the 𝐵 atoms be in a 𝑠-state and 
the two valence electrons of 𝐴 in a 𝑠 and 𝑝 state. LCAO yields the 
matrix from 1.2. Let the matrix elements ⟨𝑛|𝐻|𝑚⟩ be renamed as 

ℋ =

(

 

𝐸𝑠 ≈ 0 𝑉1 𝑉1
≈ 0 𝐸𝑝 ≈ 𝐸𝑠 𝑉2 −𝑉2
𝑉1 𝑉2 𝐸𝐵,𝑠 ≈ 0

𝑉1 −𝑉2 ≈ 0 𝐸𝐵,𝑠)

 ,       where       

|1⟩ = |𝐴, 𝑠⟩
|2⟩ = |𝐴, 𝑝⟩

|3⟩ = |𝐵1, 𝑠⟩

|4⟩ = |𝐵2, 𝑠⟩

. 

Here, 𝐸𝑠 , 𝐸𝑝, 𝐸𝐵,𝑠  are the atomic energies of the |𝐴, 𝑠⟩, |𝐴, 𝑝⟩, |𝐵, 𝑠⟩ 

states. 𝑉𝑖  are just defined by e.g. 𝑉1 ≔ ⟨1|𝐻|3⟩. Moreover, 
⟨3|𝐻|4⟩ ≈ 0, because the two 𝐵 atoms are far away from each 
other and don’t influence each other. ⟨1|𝐻|2⟩ ≈ 0, because 
|1⟩, |2⟩ are orthogonal and 𝐻 ≈ 𝐻𝐴 close to atom 𝐴. A change of 
basis does not alter the eigenvalues. Hence, use the 
hybridization 

|±⟩ ≔ (|1⟩ ± |2⟩) √2⁄ . 
In this new basis {|+⟩, |−⟩, |3⟩, |4⟩} the matrix becomes 

(

𝜖 0 𝑉1 + 𝑉2 𝑉1 − 𝑉2
0 𝜖 𝑉1 − 𝑉2 𝑉1 + 𝑉2

𝑉1 + 𝑉2 𝑉1 − 𝑉2 𝐸𝐵,𝑠 0

𝑉1 − 𝑉2 𝑉1 + 𝑉2 0 𝐸𝐵,𝑠

) ,   where   𝜖 ≔ ⟨±|𝐻|±⟩. 

If it is assumed that 𝑉1 ≈ 𝑉2, the matrix becomes (𝑉 ≔ 2𝑉1) 

(

𝜖 0 𝑉 0
0 𝜖 0 𝑉
𝑉 0 𝐸𝐵,𝑠 0

0 𝑉 0 𝐸𝐵,𝑠

) =̂ {(
𝜖 𝑉
𝑉 𝐸𝐵,𝑠

) , (
𝜖 𝑉
𝑉 𝐸𝐵,𝑠

)}, 

which is separable into two 2 × 2-matrices. 
The physical picture is that |+⟩ interferes 
only with |3⟩ and |−⟩ only with |4⟩. 



5 Nuclear Physics 
 

5.1 Weizsäcker Semiempirical Formula 
THE ARGUMENTS USED IN DERIVATING THE FORMULAR: 
To get a formula for the binding energy 𝐸𝐵  of a nucleus, the 
roughest approximation assumes that, since the interaction is 
very short ranged, each nucleon interacts with about the same 
number of other nucleons and hence the binding energy is 
proportional to the number of nucleons 𝐴 and hence 

𝐸𝐵 = 𝑎1𝐴. 
However, the nucleons on the surface have less neighbours to 
interact with. For the number of nucleons and the nucleic radius 
𝑅 is 𝐴 ~ 𝑅3 and hence the surface area is ~ 𝑅2 ~ 𝐴2/3. Thus, 

𝐸𝐵 = 𝑎1𝐴 − 𝑎2𝐴
2/3. 

The Coulomb interaction ~𝑍2 𝑅⁄  ~ 𝑍2/𝐴1 3⁄  destabilizes the 
nucleus (𝑍 being the proton number) and hence 

𝐸𝐵 = 𝑎1𝐴 − 𝑎2𝐴
2/3 − 𝑎3 𝑍

2 𝐴1 3⁄⁄ . 
This formula is also called “liquid drop model” (more acurately it 
should be 𝑍2 → 𝑍(𝑍 − 1)). A further correction, called 
asymmetric energy, comes from the fact that nuclei with similar 
numbers of neutrons and protons are more stable (see 
derivation next subsection, note 𝑁 − 𝑍 = 𝐴 − 2𝑍): 

𝐸𝐵 = 𝑎1𝐴 − 𝑎2𝐴
2/3 − 𝑎3 𝑍

2 𝐴1 3⁄⁄ − 𝑎4
(𝐴 − 2𝑍)2

𝐴
. 

Another further correction comes from the fact, that even 
numbers of neutrons and protons are preferred over odd 
numbers: 

𝐸𝐵 = 𝑎1𝐴 − 𝑎2𝐴
2 3⁄ − 𝑎3

𝑍2

𝐴1 3⁄
− 𝑎4

(𝐴 − 2𝑍)2

𝐴

+ 𝑎5
(−1)𝑍(1 + (−1)𝐴)

𝐴1 2⁄
. 

Fitting to experimental data of nucleic binding energies yields 
𝑎1 = 15.75 MeV,     𝑎2 = 17.8 MeV,     𝑎3 = 0.711 MeV, 

𝑎4 = 23.7 MeV,     𝑎5 = 0.005 MeV. 
Obviously, the last term with 𝑎5 is the first to be neglected. 
DERIVATION OF THE ASYMMETRIC ENERGY TERM: 
Although there are not so many nucleons in the nucleons, they 
can be considered as a Fermi gas at 𝑇 ≈ 0 (since room 
temperature energy 𝑘𝑇room = 40

−1eV ≪ MeV). From section 9.3 
of Statistical Mechanics (PHYS4031), the energy of a fermi has at 
𝑇 = 0 is for dimension 𝑑 = 3 and exponent of the dispersion 
relation 𝐸 ~ 𝑘𝑞 , 𝑞 = 2: 

𝐸 =
𝑑

𝑑 + 𝑞
𝑁𝐸𝐹 =

𝑑

𝑑 + 𝑞
𝑁 (

𝑑𝑁

𝑞𝛾̃𝑉
)
𝑞 𝑑⁄

 ~ 𝑁 (
𝑁

𝑉
)
2 3⁄

 ~ 𝑁 (
𝑁

𝐴
)
2 3⁄

, 

where, as above, 𝐴 ~ 𝑉 was used. Since protons and neutrons 
are different particles, their Fermi gases have to be considered 
seperatly; once for 𝑁 = 𝑍 and for 𝑁 = 𝒩 ≔ 𝐴 − 𝑍. Hence, the 
total energy is, assuming that the proton and neutron mass are 
equal, and therefore the prefactors are equal: 

𝐸 ~ (𝒩 (
𝒩

𝐴
)
2 3⁄

+ 𝑍 (
𝑍

𝐴
)
2 3⁄

) =
1

𝐴2 3⁄
(𝒩5 3⁄ + 𝑍5 3⁄ ) 

Using 𝑑 ≔ 𝒩 − 𝑍 to measure the difference in numbers, it is 
𝑑 + 𝐴 = 𝒩 − 𝑍 +𝒩 + 𝑍 = 2𝒩    ⟺      𝒩 = (𝐴 + 𝑑)/2, 
𝑑 − 𝐴 = 𝒩 − 𝑍 −𝒩 − 𝑍 = −2𝑍    ⟺      𝑍 = (𝐴 − 𝑑)/2 

and writing 𝐸 in terms of 𝐴 and 𝑑 yields 

𝐸 ~ 
1

𝐴2 3⁄
((𝐴 + 𝑑)5 3⁄ + (𝐴 − 𝑑)5 3⁄ )

= 𝐴((1 + 𝑑 𝐴⁄ )5 3⁄ + (1 − 𝑑 𝐴⁄ )5 3⁄ ) ≈ 2𝐴 +
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𝑑2

𝐴
, 

where in the last step, the terms 1 ± 𝑑/𝐴 were Taylor expanded 
among 𝑑 𝐴⁄ ≈ 0 up to the second order. Hence, 𝐸 ~ (𝒩 − 𝑍)2/𝐴. 
 

 

 

 

 

5.2 Isobar Isotopes 
Isobar Isotopes are Isotopes with the same nuclei number 𝐴.  
MOST STABLE 𝒁: 
Taking the Weizsäcker binding energy from 5.1 

𝐸(𝐴, 𝑍) ≈ 𝑎1𝐴 − 𝑎2𝐴
2 3⁄ − 𝑎3 𝑍

2 𝐴1 3⁄⁄ − 𝑎4 (𝐴 − 2𝑍)
2 𝐴⁄ , 

the mass of a nucleus can be given as (using atomic units 𝑐 = 1): 
𝑀(𝐴, 𝑍) = 𝑍𝑚𝑝 + (𝐴 − 𝑍)𝑚𝑛 − 𝐸(𝐴, 𝑍), 

where 𝑚𝑝 and 𝑚𝑛 is the proton and neutron mass respectively. 

For constant 𝐴, the most stable nucleus 𝑍0 can be found by 
𝜕𝑀

𝜕𝑍
|
𝑍0

= 0    ⟺      𝑍0 =
𝐴

2

𝑚𝑛 −𝑚𝑝 + 4𝑎4

𝑎3𝐴
2 3⁄ + 4𝑎4

. 

ENERGY DIFFERENCE FOR DIFFERENT 𝒁: 
For a constant 𝐴, the mass (or energy) difference 𝑀(𝐴, 𝑍) −
𝑀(𝐴, 𝑍0) goes like ~ (𝑍 − 𝑍0)

2, as shown below. Multiplying out 
all the sqaures, it is 
𝑀(𝐴, 𝑍) − 𝑀(𝐴, 𝑍0)

= (𝑚𝑝 −𝑚𝑛 + 4𝑎4)⏟            
𝑐1

(𝑍 − 𝑍0) + (
𝑎3

𝐴1 3⁄
+
4𝑎4
𝐴
)

⏟        
𝑐2

(𝑍2 − 𝑍0
2) 

             =
!
𝑐3(𝑍 − 𝑍0)

2 = 𝑐3(𝑍
2 − 2𝑍0𝑍 + 𝑍0

2) 
Obviously, that 𝑍0 = −𝑐1 2𝑐2⁄ . Now, comparing the coefficients 
of 𝑍 on both sieds of the equation, it is 
             𝑍2 →     𝑐2 = 𝑐3 
             𝑍1 →     𝑐1 = −2𝑍0𝑐3 
             𝑍0 →    −𝑐1𝑍0 − 𝑐2𝑍0

2 = 𝑐3𝑍0
2 

Using the 𝑍2-equation, both the 𝑍1 and 𝑍0 equations are 
equivalent to 𝑍0 = −𝑐1/2𝑐2 which was already found to be true. 
Hence, it is 

𝑀(𝐴, 𝑍) − 𝑀(𝐴, 𝑍0) = (
𝑎3

𝐴1 3⁄
+
4𝑎4
𝐴
) (𝑍 − 𝑍0)

2. 

𝜷±-DECAY: 
𝛽±-decay kepps the isotop on its isobar. The mass (or energy) 
difference for 𝛽±-decay is, using the Weizsäcker formula 
(skipping many steps): 

Δ𝑀𝛽± = 𝑀(𝐴, 𝑍 ∓ 1) − 𝑀(𝐴, 𝑍)

= ∓𝑚𝑝 ±𝑚𝑛 ± 4𝑎4 + (
𝑎3

𝐴1 3⁄
+
4𝑎4
𝐴
) (1 ∓ 2𝑍). 
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